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Michele Pavon* I

Abstract

Invariant directions of the Riccati difference equation of Kalman

filtering are shown to occur in a large class of prediction problems and

to be related to -a certain invariant subspace of the transpose of the

feedback matrix. • The discrete time stochastic realization problem is

studied in its deterministic as well as probabilistic aspects. In par-

ticular a new derivation of the classification of the minimal markovian

representations of the given process z is presented which is based on

a cert ain backward filter of the innovations. For each uzarkovian repre—

santation which can be determined from z the space of invariant direc—

t ious is decomposed into two subspaces, one an which it is possible to

predict the state process without ~rror forward in time and one an which

this can be dan e backward in time.
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I
Introduction

The aim of this paper is to extend the theory of invar iant direc-

tions of the matrix Riccati equation to a large class of filtering prob-

lems, to present some new results on the deterministic and probabilistic

aspects of the discrete t ime stochastic realization problem and to

illustrate the part icular features introduced In stochastic realization

by the presence of invariant directions.

Part 1 of the paper is concerned with characterizing invariant vec-

tors for the usual linear least squares estimation problem in additive

whit e noise. We extend the previous results on the colored noise prob-

lem (8 , 14, 291 to our more general setting and present some new ones.

The main result of this part is Theorem 1.6 which provides different

necessary and sufficient conditions for invariance. These conditions are

phrased In terms of the convolution of two weighting patterns, of the

optimal control of the dual problem, of the best one step predictor and

of the feedback matrix r (t) of the Kai.man filter. The latter character-

ization appears here for the first time. Indeed , the space of all in—

variant directions is simply the invariant subspace related to the eigen—

value zero of the transpose of r (t) for t larger than a certain value.

This interpretation turns out to be quite useful and enlightening, since

r(•) is the transition matrix of the estimation error and it is essen—

tial in classifying markovian representations in the stochastic realiza—

tion setting (see e.g., Theorem 2.8). Also the fact that invariant vec-

tors are generalized eigenvectors sheds new light on the proof techniques

employed In (8 , 9, 29]. The paper (9] by Clements and B. D. 0. Anderson,

which contains results closely related to conditions (ii) and (iii) of
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Theorem 1.6 , became available to us right after the first version of

this paper was submitted . The emphasis in (9] ,  however , is somewhat

different from ours in that the authors seek to characterize invariance

for a very general form of the linear quad ratic regulator problem ,

whereas our main int erest Lies in the stochastic implication s of this

phenomenon.

The second part of the paper deals with discrete time stochastic

real ization theory . Given a wide sense stationa ry vector process z

with rat ional spectral density $ , such that ~(°~) is finite and

is pos it ive def init e for all w , and a Hilbert space H con—

ta inflig the components of z Ct) for all - t , consider the problem of

determ ining all ~iif n {~~ 1. markovian representations of z ( stochastic

realizations) driven by a white noise with components In U. We solve

the problem in the following way . First the second order propert ies

of the stochastic realizations are described . Our results Integrate

those of B. D. 0. Anderson (3—5] , Faurre (11, 12] and Ruckebuach (33 ,

34]. In particular , we show that the correspondence in (33; p.70] be-

tween realizations with square transfer function and real symmetric so—

lutions of a certain algebraic matrix equation of the Riccati type holds

without any assumption on the feedback matrix. Our analysis on this

aspect of the stochastic realization problem parallels in some respects

the continuous time work of Lindquist and Picci (19] .

Then we turn to the probabilistic side of the problem which has

received considerable attention in recent years (1, 2, 18—23, 27 , 32—36].

A tool for this study is provided to us by Theorem 2.5 , which establishes

a correspondence between the deterministic as well as stochastic elements

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - -‘ - - - - —  - — - — -
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iv

of realizations evolving forward and backwar d in time. The last cwo

sections of Part 2 are devoted to a new der ~..vation of the classification

of the state processes of stocbi~stic realizations due to Ruckeb usch (33]

in discrete t ime and Lindquis t and Picci in continuous time (19] . Our

approach makes essential use of markovian representations of the inno-

vation process with the estimation error as the state. Ruckebusch has

used the error process in finite and inf inite dimensional stochastic

realization to derive a number of result s (33—35 ] , but our idea of asso-

ciating it with a stochastic realiz ation of the innovations appear s to

be new. Ta ckling the pr oblem in this way we not only derive the h A-in

results in a rather simple manner , but we also gain insight into their

meaning. For instance , the important result that realizations which can

be constructed from only the process z (internal) are in one to one

correspondence with the invariant subspaces of the feedback matrix r~
(Theorem 2.8) can be given a natural explanation in terms of the back—

ward filter of the innovations (see Remar k 2.10) . Last , but not least ,

these stochastic realizations of the innovation process pr ovide a key to

understand ing the relationship between the invariant subspaces of

and a certain class of inner functions in terms of which it is possible

to describ e the real izations of z (21 , 35 , 36] . Our results on this

subject, however, will be presented elsewhere.

Part 3 is the natural continuation of Parts 1 and 2 in that it

explores how invariant directions affect the family of stochastic reali-

zations . Indeed the space of invariant vectors I is the same for all

realizations and is nontrivial if and only if •(co) is singular . The

characterization of I as the invariant subspace of the transpose of
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relative to zero is import ant in establishing the two principal re-

sults of Part 3. The first is Theorem 3.8 which says , loosely speaking,

that in an invariant direction we can either predict or smooth the state

of an internal rea lization exactly (i .e. ,  without error) , showing that

I is closely related to the germ apace of z (23]. The second is

Theor em 3.9 which embeds every Internal real ization in a chain of in-

ternal realizations (totally ordered with respect to state covariances)

whose minimum element has a full set of predictable directions (14] and

whose maximum one has a full set of &~,othabia directions (Def inition 3.7) .

The last section of Part 3 is devoted to compar ing two possible

approaches to discrete time stochas ti c realization based on different

facto riz ations of the covariance operator. We show that the factoriza—

tion leading to markovian representations without noise in the output

[1, U] considerably narrows , compared with the other approach , the

solution class of the stochasti c realization problem when $(aii) is

1 
- 

singular. This def iciency of the first method makes it advisable to

seek marko vian r epresentations of the type consider ed in this paper Un—

less nonsingularity of • (ci.) is guaranteed .

It is worthwhile remarking that the assumptions made on the process

z in Parts 2 and 3 are mostly - for simplicity . Indeed many of the central

results can be establish ed , in a suitably modified f orm, in the nonsta-

tionary case under mild assumption s on z , albei t the derivation becomes

more involved . This explains why we refrain from introducing backward

realizations and related concepts , like that of smoothab le direction , in

the setting of Part 1. Our results on this matter will be presented

somewhere else.
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The scalar case has some interesting features for which we

refer the reader to (23].
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Part i

INVARIANT DIRECTIONS OF THE MATRIX RICCATI EQUATION

1.1 Basic notation and formulation of the problem.

We use standard vector—matr ix notation , with the following conven-

tions . The unit matrix is denoted by I , the transpose of a matrix by

prime. All vectors without prime are coluzm vectors . N(R) indicates

the null space of the matrix R. If R is syinetrie , R > 0 (K � 0)

means R positive (nonnegative) definite. If R � 0, R112 is the

unique nonnegative square root of K. The Moore—Penrose pseudoi nverse

(26] is deno ted by #. The trace operator is indicated by tr. The

cone of symmetric , nonnegative definite n X n matrices is denoted by

C~. Kronecker symbol is tS r . The superscript o identifies “optimal.”

Consider the linear stochastic model

(1.1) x(t + 1) — Ax(t) + Bw(t)

(1.2) 7(t) — Cx(t) + Dw(t)

with initial condition x(O) — x0, where A, B. C and D are constant

matrices of dimensions n x n , n x p, m x n and m X p, x0 is an

n—dimensional zero—mean random vector , the input w is a p—dimensional

zero—mean white noise sequence tmcorrelated with x0, E~x0x~} P0 and ‘ 1

E{w(s)w(t) ‘} —
. 

1
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As is well—known, the beat linear least—squares esi imat e ~(t) of

x(t), given the data {y(O), ..., y(t — 1)}, is generated recursively

by the Xalaan filter -

(1.3) ~(t + 1) — A~ (t) + K(t) (y(t) — C (t) ] (O) — 0

where X(t) is given by

(1.4) K(t) — (AZ(t)C’ + BD’)(CE(t)C’ + DD’)1

and Z(t) satisfies the Riccati difference equation

Z(t 
-
+ 1) — AZ (t)A’

— (AZ (t)C’ + BD’)(CE(t)C’ + DD’)t(CE(t)A’ + DB’)
(1.5)

+BB ’

Z(O)—P0

We shall indicate the solution of (1.5) at time a by E(s; P) when

we intend to emphasize the dependence on the initial conditiofl P0
.

DefinItion 1.1 ((8]). The n—dim~n~iona1 vector a is called an

s—invcwiant direction of equation (1.5) if a’Z(t; P0) — a’Z(s; 0) for i 
-

all t � s  and all P a C .o a

We shall study the problem of characterizing all invariant directions

of equation (1.5) .

1.2 Preliminaries.

In this section we transcribe some well known results of duality

between estimation and control into a form best suited to our problem.
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We refer the reader to (24] for the variational princ iples underlying

this duality.

Since ~(t + 1) is in the linear span of y(O) , . .. ,  y(t) there

exist matrices U(s , t) ° for S — 0, ..., t such that ~(t + 1) —

(U(s , t) °) ‘y(s). Such sequence is optimal for the following dual

problem: f ind U(t ) — (U(0 , t), , U(t , t)) which minimizes

- t
(1.6) tr {J(TJ(t)]} — tr{Q(—l, t) ‘P0Q(—1 , t) + ~ Z(s , t) ‘Z(s , t )}

s 0

where

- (1.1) Q(s — 1, t) — A ’Q(s, t) + C’ti(s,- t) Q(t , t) — I

(1.8) Z(s~ t) — B’Q(s , t) + D’U(s , t)

A standard argument yields the closed—loop form of the optimal con-

trol

(1.9) V(s , t)° — —K (a)’Q(s, t) ° s — 0, ..., t

Consider the linear estimator of x(t + 1) given by y(t + 1) —

~~~~~~~~~ iJ(s, t) ‘y(s) . Then it is easily seen that

t
(1. 10) x(t + 1) — y(t + 1) — Q(—l, t) ‘x + ~ Z(s , t) ‘w(a)

s—O

Introducing the quantities P(s , t) — E{x(a) (x(t + 1) — y(t + l)]’},

R(s, t) — E {y ( s )  (x(t +‘l) — y(t + 1)1 ‘} and applying the operator

E{.(x(t + 1) — y(t + 1)1 ’) to both sides of (l. l)—(l.2) we obtain, in

view of (1. 10) , the following adjo int system

(1.11) P(s + 1, t) — AP(s , t) + ZZ(s , t) P(0 , t) — P Q(—l, t)

_____________ ~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ‘
.‘ 
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(1.12) R(s , t) — CP(a , t) + DZ(s, t)

The term inology is justified by the fact tha t , setting up the discrete

minimum principle for the dual problem (1.11) are seen to be , with the

appropriate normalization , the adjoint equations. Let us note that

(1.13) R(s, t) — 0 s — 0 , ..., t

is a necessary and sufficient condition for optimality of the U(t) se—

quence. Whenever A is nonsingular we can rewrite (1.7) in the form

(1.14) Q(s , t) — (A’)~~ Q(s — 1~ t) — (A ’) 1CLJ(s , t) Q(t , t) — I

Hence we have the following input— output relations :

-V —s—i(1.15) Z(s , t) — ~ T(1) U (a — i, t) + B’(A’) Q(—l , t)
1—0

(1.16) R(s, t) ~ T(i)Z(s — i, t) + C&8P0Q(— l, t) 
-

i-0 .

where the weighting patterns 
~~
(.) and T(’) are defined by

‘1 — B’(A’) 1
~C ’ I — 0

(1.17) T(i) — ‘ i 1
~—3’(A’) C ’ i > 0

ID 1— 0
(1.18) T(i) — 

~1C.A B 1 > 0

Combining (1.14) and (1.15) leads us to the H~niltoniwi a~j stern

11
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Q(s , t) 1(A ’)~~ ö~ Q(s — 1, t)
(1.19) — I  _ i - I  

V 

-

P(s + 1, t) LBB’(A’) AJ P(a , t)

7
+ I 1 U (a , t);

LBD’ — BB’(A ’) ~J

Q(—l, t)) i.
I —  Q(.-l , t)

P(O , t ) J  P0

- Q ( s — 1 , t) —l
(1.20) RCa , t) * (DB’(A’) C] + (DD ’ — DB’(A’) C’]U(s , t)

P(s, t)

where Q(—1, t) — (A~)t + 1~ (A ’)1C’ U (i, t). It is clear that the

weighting pattern T~
(.) of the Haintitonian system is just the convolu-

tion of T(•) and ~~
(.).

i -

(1.21) TH
(i) — [T * T] (i) — ~~ T(i — j)~ (j)

j -0

The matrices T~
(O) , ..., T~ (n — 1) will play a central role in

establishing necessary and sufficient conditions for invariance.

1.3 CharacterIzation of invariant directions.

We study the case where A is nonsingular . This assumption enables

us to derive explicit expressions for the invariant vectors. (The case

• where no restriction is placed on A and on the definitness of the c r —

ten on matrices has been recentl y investigated in (9]) .  The three follow-

ing li~,mnaa extend known results to our more general setting .

Lema 1.2 The vectcr a is ~ z s—inv~ ’iant direction of (1.5) if

only if

L ~i:-~~_ 
~~~~ 1J ~~~~~~~~~~~~~~~~~~~~~~~
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(1.22) a c N(Q( t — s, t)°) for all t � s — 1 and all P ~ C

Proof. Observe that a control 17(t) is optimal for the dual problem

if and only if it iziirfmL~es a ’J(U(t)]a for all a € RZl. The result

now follows from a straightforward modif ication of the arg ument of

Theorem 3 in (29]. II

Notice that optimal quantities in the dual problem depend on the

terminal weight P0. To keep notations simple, we shall refrain from

explicitly exhibiting this dependence.

Remark 1.3 The pr oof of the sufficiency part in L e a  1.2 relies on

the fac t that , under condition (1.22) , U(t  — i, t)°a is invariant over

t � s for i — 0, ..., s — 1. Moreover , when (1.22) holds , it is easily

seen using ( 1.7)—(l.9) that a c N(U(i , t) °) n W( Z(i , t) °) for

i — 0, ..., t — a. In particular it follows from (1. 10) that a ’x(t + l)

(Z(i , t) °) ’w(i) , where (t) — x(t) — ~(t) is the estimation .

The mathematical framework set up in the previous section will be

useful in proving the following result.

Lenina 1.4 The vector a satisfies (1.22) if and only if

5
(1.23) a — — 

~~ (A’) 1C’A 1i—i

where the a—dimensional vectors A1, A2,  ..., A are such that

s—j
(1.24) 

~ 
T~ (i) ~~~~ — 0 — 1, ...,

i—C

ii
-- - •-

•
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In this case the optima l control sat i8fie e

- (1.25) - 
U(t ) °a — (0 , ..., 0, A5, ..., A1)

Proof . Assume that (1.22) holds. In view of the time invarianc e dis-

cussed in Remark 1.3 , we can set A1 — U(t — I + 1, t)°a for

I — 1, ..., s. Expression (1.23) can now be derived using (1. 7) recur-

sively. Let us consider the input —output relation of the 1lam(1tonia1~

system

R(s , t) — (DB tA’Y’1 C]A~
[

}Q(_ l~ t) +•~~~ T~(i)U(s — 1, c)

where

A~ 
[BB’A’) —’ Aj

As observed in Remark 1.3, a € N(Q(— 1, t)°) .  Then (1.24) follows from the

optimalit y conditions (1.1.3). Conversel y suppose a is as in (1.23)

with the X~:s satisfy ing (1.24) . Using (1.9) and , recursivel y, (1.7) ,

we obtain

Ic t-k
U(k , t) °a — —E (k) ~((A ?) t + ~ (A’) 11C ’U(k + i, t)° 3a

i—i

which, together with (1. 23) yields

s—t+k
U(k , t) °a — —K(k) ‘-C— ~ (A ’) 1C’ A~~~*ii—i

t-k
+ ~ (A ’) 1

~~ C ’(U(k + 1, t)°a _ A
~_k j+l]}

- - -  - - - - - - - .~~~~~~~~~~~~
“

~~~~~~~
-

~~~~~~ ~~~~~~~~~~~~~~~~~
- ,—-~~~~~
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A calculation similar to that found in the proof of Theorem 8 in (29],

i.e., using (1.4) , (1.5) repeatedly and condition (1.24), shows that

s—t+k -

(1.26) K(k) ’ 
~ 

(A ’)~~~C’A t_k+j —

i—i

which, inserted into the previous expression for U(k , t) °a , enables us

to derive U(k , t)°a — ~~~~~~ for Ic — t — s + 1, ..., t recursively.

This and (1.7) yield Q(t — s, t)°a — 0, i.e., condition (1.22). Also

(1.25) now follows in view of Rainark 1.3. This completes the proof. II

A straightforward extension of the proof of Theorem 8 in (29] estab—

:1 liahes the following lemma.

Lema 1.5 A vector a is s—invar i~zzt f o r  (1.5) if and only if a is

aa in (1.23) and

(1.27) a’i(t + 1) — — ~ X~y(t + 1 — i) for all t � a - 1
i—i

Let r (t) denote the f ee&~ack nutriz - 

A — K(t)C.

Theorem 1 6  The following statements are equivalent:

(i) a is an a—invar iant direct ion of (1.5) .

(ii) a satisfies (1.22) .

(iii) a is as in (1.23) and (1.24) holds.

(iv) a is as in (1.23) and (1.27) holds.

(v) a generates the sane a-dimensional cyclic eubspace of r (t) ’
for all t ~ s — 1 and all P0 € r ;  this invariant subspac e

of r(t) ’ i8 associated with the eigen-vaiue zero, i.e.,

(r(t) ‘) 3a — 0. Moreover r (t — $ + 1) ’  •~~• r (t) ‘a — 0 for

all t~~~s — 1 .

~

-- • -;;;

~

ii _ _ _
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Pr oof . The equivalenc e of (1) , (ii) , (iii) and (iv) follows directly

from L~~~as 1.2 , 1.4 and 1.5. Suppose a satisfies (v) and

observe that relations (1. 7) and (1.9) yield the expression Q ( t — s , t)° —

r(t — s + 1)’ •‘. r(t)’. By assumption rct — a + 1)’ ~
.. r(t) ‘a — 0

and (1.22) follows. Conversely, if we assume (iii) , we derive from

(1.26) and the last part of the proof of Laiimia 1.4 the relation

r (t) ’ ~ 
(A ’) ’ 1C ‘X~~4 — ~ (A ’)~~c ‘Aj+4+ii—i. J i—i 4

for all t � s — j — 1  and ail P0 C~~ where J 1 , ..., s — l  and ,

for j — s — 1, the right hand side is defined to be zero. This estab—

]ishss (‘v) . 1/

Condition (v) of this theorem is new. Its importance will completely

surface in the stochastic realization setting.

r ark 1.7 ((8]). The sets I of s—invariant directions and ~ —

u _ 1 I~ 
of invariant directions are vector spaces. It follows from the

previous theorem that 1 — u~_,1 I .

Remark 1.8. The dimension of the invar i~v&t subapa oe I can be easily de—

termined in the single—output case y(t) — c ’x(t) + d’w(t) . It is equal

to the min(mum between the rank of the observa bility matrix

(c A ’c (A?) h1
~~cj~ and the first index j  such that Tu(i 

— 1) —

— T
R

(O) — 0 and Tu(j) ~ 0. The general case is rath er involved .

We shall not pursue here the extension of the results of [29) on this

matter.

;~~—j ~~~~.- --~
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Let

(1. 28) 
- 

W(z) ~ T(i) z~~ — C(zI — A) 1B + D
i-C

be the transfer function of (1.l)—(l.2) and

(1.29) V (z) 
~

the transfer function of the Hamiltonian system. The following charac-

terization of T
~

(’) will be helpful in the third part of the paper.

Theorem 1.9 Asewne A nonsingular. Then 
-

(1.30) W~(z) — W (z)W (z~~ ) ’

If y in (1.2) is stationary with spectra l density •(z) ,  we also have

— 

(1.31) W
E(s) •(z)

Proof . Consider W(z~~) ’  B ’(z~~I — A ’)~~C’ + D ’ —

—B’(A’)~~~(I — z~~(A ’) 1)~~C ’ + D ’. Expand the last term in a neighborhood

of infinity as follows:

(1.32) —B ’ (A’)~~~(I — z~~ (A ’) 1)~~~C ’ + D ’

— D’ — B’(A’)~~~C ’ — B ’(A’) 2C’z 1 
— B ’(A’) 3C’z 2

— 

~

Take the Cauchy product of the two series in (1.28) and (1.32) to get

(1. 30) . In the case of a stationary y the well—known spectral factor —

zation formula

V 

-

— - ~~~~ - -- -- :,.~~ f ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - -V -V -V

- _ _ _ _ _ _ _ _ _ _  -

________________ -..~~-5 ~~L... ~~~~~~~~~~~~ -. —~~------~----—- -
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II

(1.33) $(z) 
-

—

yields (1. 31) . II

Notice that the calculations in the previous theor em make sense be-

cause the series in (1.28) and (1.29) converge respectively to W(z)

and to WE (S) in an appropriate neighborhood of infinity.

Let ~ (t , a) — E{y(t)y(s) ‘} be the covariance operator of the ob-

servations. It is a simple matter , using the expression y(a) —

CA~~ x (s + n) + 
~~~~ ~(i) ‘w(s + i) which can be derive d from (1.1)—

(1.2), to see that the parameters Tu(0), , T~ (n — 1) determine the

degree of “smooth ness” of 
~~
(• ,‘), i.e., the number of diE ferencing opera-

tions on ~~~~~~~~~~ necessary in each direction to produce a Kronecker del— .

ta. This number has been named in the scalar case relative order of the

covariane e, see [14] for example. This fac t has its counterpart in the

- I spectral domain in Theorem 1.9.

1.4 Predictable directions.

The invariance properties of invariant directions have been pointed

out by several authors [8, 14]. Indeed , as it is apparent fr om Theorem

1.6, the space I is invariant over models (1.1)—(1.2) having the same

covariance of the output and the same (up to a change of basis in the state

space) pair (A, C). However , if a is an s—inva riant vector for (1.5)

the value a’ E(a; P0) does depend on the model. A special case of par-

ticular interest is when a € U(t(s; P0) ) .

— ~~-V~~~~ V ~___ .- ~~~~~~~~~~~~~ 
- - -V . - ~~~~~ - -

- — - - - ~~~~ - -- — — - - - - — -  - - — - - -~~~~ - - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — -~~~~~~~~~~~~~~ -~~~~ - —~~~ — - -- -— -

-  -~ - - 
-
-
~ ~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-

~~~~~ -V~~~~--~ ~~~~~~
• - —•—- ~~~~~~~~~~~~ - 

V_V ~~~~~~~~~~ V_~~~
_. 

~~~~~ ~~~~~~~~~~ ——~~~ — -—-—-~— - - -V-— -— -- — 
_ _L. .. ~~~~~~~~~~ ~~~~~ ~~~~~~~~~
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Definition 1.10 ((14]). The n—dimensional vector a is called an

s-predictab le direction of equation (1.5) if a ’E(t ; P )  — a ’t(s; P )  — 0

for all t � a. The two following theorems extend some results of Gevers

(14] .

Theorem 1.11 The vector a is an s-predictable direction of (1.5) if

and only if a is as in (1.23) with the A~ satisfying

s—j 
—

(1.34) ~ T(i)A 4~~ — 0 — 1, ..., a
i—0

Proof . If a is s—pr edictable a ’~ (t + 1) — 0 for all t � $ — 1.

Using (1. 10) with optimal quantities we see that a c N(Q(—1, t)°) and

a E n N(Z(i , t)°) for all t � s — 1. Again time invariance of

the optimal control can be shown to hold and , identify ing quantities as

in (1.25) , we get (1.23) from Q(—l , a — l) °a — 0. Also (1.34) follows

from (1.15) . To prove the converse first observe that (1.34) implies

(1.24) . By ~~~~~ 1.4 a € N(Q (—l , t)°) and (1.25) holds . From (1.15 ) F
and (1.10) we conclude that a 5(t + 1) — 0 for all. t � s — 1, i.e.,

a is s—predictable. II —

Theorem 1.12 Let E(s; p ) > 0. Then E(t; P0) > 0 for all t � a

if and only if T(0) has rank m.

Proof. Let A be such that ~ (O) A — 0. Then (A ’)~~ C’A e N(E(t; P0))

for all t � 1. To prove the other half we use induction. Suppose

Z(t — 1; P0) > 0 and a € N(E(t; P0)). It follows from the principle

of opt imality that

j - 
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(1.35) 0 a ’ Z(t; P ) a  — min {(a ’A + A ’C)E(t — 1; P ) ( A ’a + C ’A)
AcR

+ (a ’B + X ’D) (B ’a + D ’A)

Let A°. be the opt imal value in (1.35) . Since E( t — 1; P0) > 0 we get

a — — (A’)~~C’X°, B ’a + D’A° — 0 and finally (D’ — 3’(A’)~~C’)A° — 0.

If ~ (O) has rank m this implies that a — 0. II

Remark 1.13. Theorem 1.12 agrees with the results obtained by Silverman

øt ci. (25, 30, 38]. In fact, the presence of nontrivial predictable di-

rections of (1.5) implies that the system (1.l)—(1.2) is not strong ly ob—

- 
— eervabZe [38]. However, it can well happen that it is completely observ—

able (and controllable). In the third part of the paper we shall study a

set of i~{n4m*l realizations with a nontrivial invari ant and , for some of

H them , predictable subepace.

1.5 Discussion.

Our study has. shown that invariant directi ons can occur in a more

general situation than just the noise—free measurements case treated Lu

[8, 14, 29] . Conditions (iv) and (v) of Theorem 1.6 provide us with a

probabilistic interpretation of this phenomenon. In an invariant direc-

tion the optimal. filter depends only on some of the last observation in—

stead of the whole information availabl e. This fac t is strictly related

to the invariant subspace of r(t) ’ corr.spon’4~ng to zero. Moreover , in 
- 

-

the case when y is stationary with ratio nal spectral density, condition

(iii) of Theorem 1.6 with Theorem 1.9 shows a precise connection between

invariant vectors and the spectrum of y. All of this motivates the sto-

chastic realization approach to the problem taken in Part 3.

I 

— — ___________ _________________ 
Si-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
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F{n~a11y we remark that this theory can be extended in a straightfor-

ward manner to the case when the system matri ces are time—varying replacing

the concept of invariant direction by that of dag.ner-ate direction (14] .

A reduction of the order of the Biccati equation which baa to be solved

can be achisv*d along the lines of (8] whenever invariant (or degenerate)

directions exist.

H

iVi

~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~ — ~~~~~~— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ — — —— -V-V ~~~~~~~~~~ 
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Part 2

- 
DI SCRETE TIME STOCHASTIC REALIZATION :

- 
GENERAL THEORY

2.1 Notation and problem formulation. -

Almost sure equality between random vectors is simply indicat ed as

equality. If {~ (t) ; t € ZI  ‘.s a second order vector process defined on

the probability space (~2, F , F) and S a subset of the integers Z,

we denote by H ( ~) the closed linear hull in L2 (Q, F , P) of the compo-

nents of ~(t), t € S. We shall write H(~), H( ~), f l(~) and H(~ (t))

instead of 
~~~~~~~~~~~~ 

R{Z€Z I �t} (
~
)
~ 

H{~ €z ,~~~ }(
~) and R~~ (~ ) respective—

ly. Let s-C • (a5(~) } denote the orthogonal projection operator onto

We abbreviate E {’I H( ~ ( t ) )}  as E {’I ~~(t)}. The process ~ is

called a wide sense vector Mv’kov process if

— ~{~ (s)~~~(t) } for a

or equivalently

— ~
{
~ (s) I~ (t) } for s � t

For the sake of brevity we shall. use the word ‘Markov” instead of the

~~pression “wide sense vector Markov . ”

L

— V -  _ - -

- - - - -  - 
~

-_~~~_ ;~~~~~~~~~~

_
_
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We shall be concerned with a wide sense stationary , purely nondeter—

ministic , in—d imensional stochastic proces s {z(t) ; t e Z}. The process z ,

defined on the prob ability space (~2, F, F), is assumed to be centered and

to have a rational spectral density 0 such that •(cQ) < . The f inite-

ness of 0&) is essential only in Part 3 and is assumed here for simpli-

city. The matrix funct ion 0( ’) enj oys the following properties : each

element of $ is analytic on the unit circle , 0 is discrete parahermitian,

i.e. , 0(z) ’ — 0(z4) and $(e~
W) � 0 hermitian for all real w. In

addition we suppose that z is a nTinizal process (31] which, in view of

the ration~l{ty of its spect ral. density , is equivalent to 0(e~~) > 0 for

all w. This assumption too is made f or convenience and can be removed

without impairing the main results of Parts 2 and 3. -

- ; In many problems of estimation and optimal control , when given a non

Markov process z which models the inf ormation flow, it is necessary

to resort to an auxiliary Markov process x which makes ~(t) — {z(~~~?1)) -

a Markov process . More precisely we are interested in the following two

problems.

i. Wide sense atochastic realization pro bl~n: Determine, from the know-

ledge of 0, all quadruplets [A, B, C , D], with dimension of A minimal ,

such that the process y, generated by the dynamical system (1.1) — (1.2)

driven by an arbitrary normalized white noise w, has the same spectral

density 0 as z.

II. Proper stochast ic realization prob ian: Let H be a Hilbert space

such that H(z) c H c L2 (fl, F , P) .  Given H and the process z find all

quintuplets (A, B, C, D; v], with dimension of A minimal and w a nor-

malized white noise satisfying H(w ) c H, such that y(t) ,  generated by

—--V--V 
~~~~~~ 1 ~~ — —--— - — - ~ — — -—— -- - ~~~~~~~~~~~~ — — -. ~~~~~~~ — 4... -— ~~ —-~-~~~~~~-‘-- -.—.- ..
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(1.1) — (1.2) and z(t) are equivalent random vectors for all t.

We shall call a solution to Problem I a wide sense minimal stochas-

tic realization and a solution to Probl em II a p roper miniiral1 at cc has —

tic realizat ion. It is i~~.diate that to each proper stochastic real iza-

tion there corresponds a (unique) wide sense realization . The converse

is false. To attack Problem II we shall choose a route passing through

the solution of Problem I, with the intent of deriving some new results

along the way. It is good to bear in mind, however , that a direct proba-

bilistic approach to proper stochas t ic realization is possible and in a

sense more natural (18, 20—22, 27, 35, 36].

2.2 Wide sense stochastic realizations.

Our preli’n{naries on Probl em I are based on the important work of

B. D. 0. Anderson (3—5] and Faurre [11, 12]. Problem I is equivalent to

the classical spectral fa ctorization problem. Find all min~~~l stab le

spectral factors of 0, i.e., all matrices W of real rational functions

of minimal McMillan degree (6] and with all their poles inside the unit

circle which satisfy (1.33) . Indeed, if [A, B, C, Dl solves Problem I,

then W(z) — C(zI — A) 1B + D is a stable m{idin~ l spectral factor of 0.

Conversely, any such W yields a whole class of wide sense stochastic

realizations. In fact, using one of the algorithms [16, 39 , 41] available

in the literature we can compute a tn(n fmal (6] realization (A, B, C, D]

of W. Then all minfm~ l realizat ions of W given by

(2.1) (f’AT, T4B, CT, Dl T € GLdin A (R)

Prom now on we shall leave the word minimal out. All realizati ons
are to be intended to be minimal unless the opposite is explicitly stated. 

. — - ~ -

~~~~~~~~~~~~~~~~~ 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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solve Problem I. In view of this equivalence Problem I can be solved as

follows. Express 0, by means of partial fractions , as

(2.2) 0(z) — S(z) +

where s is a positive real2 and rational function. Let (F , C, H, 3]

be a minfin&1 realization of S. As observed before , sever al, procedures

are known to determine (F , C , H, 3] which is unique up to an equivalence

such as in (2.1) . The following simple 1e~ua allows us to eUi~(i~*ts S

in the sequel.

Lema 2.1 Let S be the positive rea l f unction satisfying (2 .2)  ~zid

(F , C, H, 3] a mini.j r.z1 realization of S. If dim p — � ~., then F is

nonsin lar~~ zd J+J’ G’(P’)~~H’ + 0(c’).

Proof. Taking limits in (2.2) we see that 0(a) — .7 +3 ’  +

lim G’(z 41 — F’) 4R’ , since S(z) — H(zI — F)~~ G + 3. The conclusion now

follows from the finiteness of 0(as) and the ain{~~ l ity of (F , G , 0, .71.11

To avoid trivialities , we shell assume from now on that z is not a

white noise, i.e. , dim F — n ~ 1. It follows from Lenna 2.1 and the cele-

brated Positive Real L~~~a (see e.g. ,  (28] ) that the set of all wide sense

stochastic realizations is nonempty and given by

(2.3) - (A, B, C, D] — (T~~Tr , f1(31, 32)V , ET , (R (P) 1
~~

2 , O)V ]

where T E GL~ (R)~ V is any p x p constant orthogonal matrix , is

n ‘~ m, is n X (p — a) (here p � a is arbitrary), P is n x

A real rational function with no pole on the unit circle is said
to be (discrete) positive real. if it has no poles outside the unit circle
and S(eiW) + S(e i1~)’ ~~ 0 hermitian for all real. w.

- 
- - V~~~~~ V4~~~F.~~~~~~~~~ V - - - V 

- ~~~
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sy etric and positive definite , R(P) is the nonnegative definite quan—

tity C ’(Y ’) ’
~~H ’ + 0(c.) — UPH ’ and (P , B1, 82) solve the system

(2.4) P — PPF ’ + B1B~ + B2B~

(2.5) C — FPH ’ +

It is no restriction to choose T — I and V — I in (2.3). In fact all

other realizations can be obtained from realizations of the form

(2.6) x(t + 1) — Fx (t) + 81u(t) + B2v(t) w — {u)

(2.7) z(t) — Hx(t) + R(P)~~
2u( t) V

by means of a change of basis and an orthogonal transforma* Lon of w. Hence,

whenever convenient , we shall narrow our attention to realizations of the

type (2.6) — (2.7).  We shall write P for the set of all synnetric , posi-

tive definite P which solve (2.4) — (2.5) and Q~ for the subset of P

consisting of those P such that R(P) is singular. Notice that the

realiz at ions corresponding to elements of Q are precisely those which

have singular intensity of the noise in the outpu t equation. It can be

shown (12] thac P is compact , convex and forms a complete lattice when

endowed with the natural partial order P1 � P2 if and only if P 1 — P2 ~ 0.

There exist a maximal and a minimal element P~ ~~~ ~ 
so that P~ �

P ~~ ~~~* for all P E P. Moreover the minimality of the process z implies

(13] that P* — P~ and R(P ~) are positive definite . Hence P\Q. is

nonempty. The following resul t provides us with some information about

the set Q.

~~~~JiiIJTiiI ~ii ~~~~ L~~J -
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Proposition 2.2 The set P\Q is convex. For all P € P \Q, q ~
ond A € (0 , 11 i~w have that (IP + (I. — A)Q] e P\Q. The Bet Q~ is
contained in the relative boundary of P.

Proof. The first two results follow at once from the fact that for

E P, A e (0, 1] we have R(XP1 + (1 — A)P2) XR(P 1) + (I. — A)R . (P 2) .

They in turn imply that , if P E P\Q and Q £ Q, the segment (P , Q]

cannot be extended beyond Q without leaving P. We conclude that Q
belongs to the relative boundary of P. II

Let us introduce the mapping A: R ~~~~~~~~~~~ 
g
fl~Cfl defined by

(2.8) A(P) — —P + PPF ’ + (C — PPH ’)R(P)~~~(G’ — HPF ’)

The set P\Q is contai ned in the domain of A ( ’) .  It is possible to

extend A( ’)  to all of P since the points in Q constitute removable

discontinuities. We c~an now derive an important alternative characteriza-

tion of the set P.

Theorem 2.3 Let A( •) be given by (2.8). Then P — {
~lP — P’, A(P) � o}.

Proof. Let (P , B1, B2) solve (2.5)— (2.6) with P P ’ and P > 0. Then

if P € P\Q, we get t ediately A (P) — —B 2B~ . If P e Q, let

be a sequence in P\Q converging to P. Then A(P~) � 0 and it follows

that A(P) — h a  A(Pi) ~ 0. This shows that P c {
~I~ — P’ , A(P) S 0).

i
The other inclus ion can be proven by an argument akin to that used by

8. 1). 0. Anderson [4; p.140]. II

This result provides a bridge between the theory of positive real

functions and the study of quadrat ic matrix inequalities and algebraic

Riccati equations .

I
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Let us introduce the set P0 {P E PIA (P) — 0) . Clearly P con-

sists of all P € P for which B2 — 0.

Remark 2.4 Since the eigenvalues of F lie in the open unit disc , ele-

mentary Liapunov theory ensures that to each 
~~~~ ~~ 

there corresponds

a unique P. The converse does not hold in general . However, for reali—

zation s of the form (2 .6)—(2 .7) ,  to each P the re corresponds a unique

81. This is insnediate from (2.5) for P P\Q and holds for all P E P

since points in Q appear as removable discontinuities of the map

P + (C — FF11 ?)R(p) 1/2 Hence there is a unique wide sense realizat ion

of the type (2.6)—(2.7) cor respond ing to each P in P0.

Both Problem I and It seek to f ind dynamical. systems evolving forward

in t ime like (l.l)—(1.2) which is natural to call for r~ rd representations

of the proces s z. Yet , there are other representat ions of interest.

- 

- 
There exist situatio ns, for example, in which it is more useful. to con—

sida r a bao1o.~~’d repres entation of the form

(2. 9) ~(t 
— 1) — ~~ (t) + ~~(t)

(2.10) y(t) — ~~ (t) +~~~ (t)

where ~ is a normalized whit e noise such that (t) is orthogonal to

for 
- 

all t. This leads us to formulate the backwar d counterpart
t

of Problems I and II.

1. Wide sense bac1a~7ard stochastic realization p roblem: Determine , from

the knowledge of •, a.U. quadruplets (I~, I, ~~~, ~
], with dimension of X

in{n4m ~~~ 1, such that the process y, generat ed by the dynamical system

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ __ _ _ _  _ _
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(2.9)—(2. lO ) driv en by an arbitrary no rmalized white noise w , has the

same spectral. dens ity $ as z.

11. Pr oper bac1o.~m’d stochastic realization p roblem: Given H and z

find all quintuplets (I, I, 
~, ~~; 1, with dimension of I i~{ri 1iwa1 and

a normalized white noise sat isfying R (~v) c a, such that y(t) given

by (2.9)—(2.l0) and z(t) are equivalent rand om vectors for all t.

Solutions to Pr oblems I and if are called wide sense and proper back-

z~~’d. stochastic realizations respectively. We shall now briefly discuss

Problem 1, while Problem 1! will be implicitly solved in the next three

sections in view of Theorem 2.5 below.

• Problem I is equivalen t to the dua l ape oti~zl fact or ization problem

considered by Anderson (3] and Faurre (12] which consists in finding all

‘~{“{ al unstable (i.e. , wit h all the poles outside the unit circle) spec—

tral factors i~(z) of i(s) . It follows from the parahermitian property

of O~ that this problem is equivalen t to the spectral facto r ization prob—

hem for $ ( ‘)‘ . Hence all the results on Problem I have a natural coun-

terpart in the backward setting via the duality relation (F , C , H , $(~ )) +

(F’ , K ’, G ’, •(co) ’) . In particular a.U solutions to Problem I are charac-

terized by 
-

(2.11) (1, L ~, ~i - (T~~F’T , T~~ (i1, 12)V , G~T , (~~~ ) l/2 0)Vj

where T and V are as in (2.3), is n x m, is n X (p —

is n ~C n, syemetric and positive definite, R(i) — HY 1G + i(~ ) ’  — C ‘PC

and ~ , 
~~~ 

solve the system 

-~ - - - -
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(2.12) 1 - F PP + + 32B2

(2.13) H ’ — F ’IG + il~ (1)l/2

Whenever it is appropriate , we shall restrict ourselves to realiza-

tions of the type

(2.14) ~ (t - 1) - F’ (t) +I1~ (t) +i2~ (t) - 

H

(2.15) z (e) — G c(t) +

where P is the state covariance. The set P of all symeetric , positive

definite solutions to (2.l2)—(2.13) and ~ of all I c V such that i(I)
- 

• is singular enjoy the same kind of properties as P and Q respectively.

In particular there exist P~ and ~~~* such that F.~ �1 ~ ~~* for all

P € P. It is well known (12, 37] that P — (P 1IP c P}, so that 
~~~~~ 

—

(P*)~~ and 1* — Indeed , the following result holds.

Proposition 2.5 The quadruplet (F, B, H, D] with B (B1, B2) ~~~

D — (R(P) 1~
’2 , 0) solves Prob lem I if and only if (F’ , !, G ’ , 3] solves

Pro blønTwher e

(2.16) 
~~~ ~~1’ ~~~ 

- -P~~i~ 3(I - B’P~~B) 1’~
2

(2.17) ~~~~— (D — HP~~B) (I — B’P~~B) 1’
~
2 

—

- (R( 1’
~
2 

- HP 1B1, — HP ‘B2)(I - B

Proof. The result follows from long but simple calculat ions using (2.4)—

(2.5) and (2.l2)—(2.l3) . II

_____  
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This pr oposition exhibits a correspondenc e between forwasd and back-

ward wide sense realizat ions and raises the question whether a result of

the same typ e can be establishe d for prop er realization s . We turn to this

problem in the beg{nn(ng of the next section.

2.3 Proper stochastic realizations.

Let us consider a proper stochastic realization of z (F , B , H, D; w],

with state process x and -state covariance P. As is well known, the or-

thogonal decomposition 
-

x(t + 1) - E{x(t + l) IR (~ )} + (x(t + 1) - E {x(t + 1) R (x)}J

yields (2.6) . Similarly the expression

A A
(2.18) x(t ) — E {x(t) IH~+i(x) } + (x(t) — E{x ( t ) I H ~+1(x)}] 

-

leads to a backward model. In fact , the process x is Markov in both

directions and

E{x(t) x(t + 1)) — E{x(t)x(t) ‘F ‘}E{x(t + l)x(t + 1) ‘}~~x(t + 1)

PF ’P~~x(t + 1)

which gives

P’~ x(t) — F’P~~x(t ÷ 1) — F’P~~B (w(t) — B’(F ’)~~ P~~x(t) ]

— F’P~~x(t + 1) — P~~P~~B(I — B ’P~~B] (w(t) —

— B ’(F ’) 1P 1x(t) 1

Defining

(2.19) ~(t) — P~~x(t + 1)

1 

_ _ _ _ _  
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and

(2.20) (t) — (I — B ’P~~B)1’12 (w(t) —

We f inally obtain

(2.21) (t - 1) - F’~(t) - P~~P~~B(I - B’P )~~
2
~(t)

It is not difficult to check that is a normalized white noise such

that (t) is orthogonal to (G~) for all t. The f orward and back-

ward noises are related as follows

(2.22) (I - B ’P B) 1”2
~~(t) - w(t) - E{w(t)tH~+1(x) }

We also have

z(t) — Hx(t) + Dw(t) — (G ’(F’) 4P~~ — DB ’(P ’)~~ P 1]x(t) + Dw(t)

— G’P~~x(t + 1) + (D — G ’P~~B] (w(t) — B ’(F’) 1f1x(t) ]

— G ’i(t) + (D — HP43](I — B~P
lBj L’2(t)

Siii tng up we obtain a strict sense version of Proposition 2.5 , analogous

to the continuous time result of Lindquist and Picci (193 .

Theorem 2.5 The quintuplet (F, B, H, D; v3 is a pr oper (fo rw~ ’d) sto-

chastic reaZization of s with state p rocess x and state couarianc e P

if and only if the quintup let (F’ , I, G’, D; wJ is a proper bac7a~urd

stochastic realization of z with state proces s ~ given by (2.19) and

state covarianc e P~~. where ~ is as in (2. 20) and 1, ~ are given by

(2.h 6)—(2.17) .

-

--
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Results closely related to this theorem have been pres ented by

Ak.(ke (1; p.168] and Ruckebusch (33; p.32]. However, the first deals

with realiz ations without noise in the observations , the second does not

derive expressions for , I and ~ such as (2.20), (2.16) and (2.17).

So far we have said nothing about eaiatence of proper stochastic

realizations. It is well known that . a necessary and sufficient condition

for a purely nondeterministic wide sense stationary process z to admit

finite dimensional stochastic realizations is that its spectral density

is rational and that in such a case there exists a unique realization of

the type (2.6)—(2.7) corresponding to P~ (cf . (33] for example). The

i~tn1i,.um variance realizat ion

(2.23) x~(t + 1) — Fx~(t) + B~u~ (t)

(2.24) z(t) — Hx~ (t) + R(P*)~~
2u*(t)

- is the steady-state Kalman filter, with the steady-state Kalman gain B~
given by

(2.25) — (FER ’ + 3D’) (HER ’ + Di)’)~~~
2 

— (C - FP~H ’)R(P~ )~~
”2

where (F , B, H, D] is any wide sense realization and Z is the unique

nonnegative definite solution to the Algebra ic Riocati Equation

(2.26) E — PEP ’ — (PER ’ + BD) (HEH ’ + DD ’) 1(HXP ’ + DB’) + BB’

The noise u~ is called the innovation proces s and is characterized by

the fact that — H;(u*) for all t € Z. Finally, if x is the

state process of any proper realization (2.6)—(2.7), we have 

_ _  
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-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - 

~~~~~~~~ 

- s



~~~~~~~~~~~~~~~~~~~ -

27

(2.27) x~(t) — E{x(t)1H 1(z)}

By. duality there exists a proper backward stochastic realization corres-

ponding to , namely the bac1a&~~’d steady—state Kaiman filter

(2.28) ~(t — 1) — F ’ 5(t) +I ~~~(t) -

(2.29) z(t) — Gc~(t) + I(I~) 1”
~~~(t)

Here the baa~1ai~~d steady-stats ICaiman gain i~ is given by 
-

(2.30) — (F ’IG +I ~~’) (G ’!G +~~~~) _h12 
— (H’ — F’F~G)R(~~Y

1”2

where (F’, 1, G’, ~
] is any backward wide sense realization and ~ is

the unique nonnegat ive definite solut ion to the Dua l Algebra ic Riccati

Equation

(2.31) — P’~F — (F ’~G + i~ ’) (G ’EC + b ~~’)~~~(G’~F + 
~~~~ 

+

The equality H~(z) H ( ~~ ) for all t c Z characterizes the baclaoard

innovat ion process 
~~~~

. The backward filter satisfies

(2.32) ~(t) — E{~ (t)IH +1(z)}

where is the state of any proper backward realization (2.14)—(2.l5) .

By Theorem 2.5 there exists a proper stochastic realization corresponding

to (2.28)—(2.29) (which, as it will be apparent in the next section , is

unique)

(2.33) x’~(t + 1) — Fz*(t) + B*u*(t)

(2.34) z(t) — ~~~~~~*(t) + R(P*) 1”2u*(t) 
-

I
- — .—,‘.------ —--— .——— - — - — - - - 

4
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wit h state covarianc e P*. Then , if x is the state process of any real-

ization ,

(2.35) ~
‘
~(t) — (P*)~~ x*(t + 1) — P~~E{x(t +

and

(2.36) E{x(t)1R (z)} — P(p*)~~x*(t)

This justifies our choice of working with P 1x rather than x in the

backward setting . In fact (2.36) is not invariant over p.

Definition 2.6 ((19, 33]). A proper stochas t ic realization of z with

state process x is said to be inter ”ial if H(x ) c H(z) ,  external other— —

• 

Internal realizations are of particular interest since they are the

only one we can construct from the process z .  For example , the minimum

and maximum variance realizations introduced in this section are internal.

It should be noted that the existence of external realizations depends on

H. If H — H(z), for instanc e, all real izatio ns would be internal.

— 2.4 Characterizatlon ;of internal realizations.

Let us consider the spectral representation of z (see e.g. (31])

given by

iL~t , ~z(t ) — e dz (w)
—ir

where dI is an orthogonal stochastic measure such that

E{d2 (w) d2 (w)~ } — ,(,iw) ~~

_  _ _  

- 

_  

-
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-
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(Here + denotes complex conjugation and transposition.) Let W (z) —

H( zX — P)
_1

31 + R(P )~~
’2 be a squar e (in X in) spectral factor of •(z) .

Then the process u defined by

(2.37) u(t) - I e~~~ (W(e~~)j 1 d~ (w)
i_li 

-

is a normalized white noise such that u(t ) £ H(z) for all t (31; p.413

and consequently (F , 
~~~~ 

B, R(P)~~
’2
; u] is an internal realization of

z. The following result shows that W( •) being a square matrix function

is also necessary for a realization to be internal.

Theorem 2.7 ((19 , 333 ) A prop er stochastic realization i. internal..

if and only if its transfer function is square.

It follows from this theorem and Remark 2.4 that internal realizations

of the form (2. 6)— (2.7) are in one to one correspondence with the real

sy~~etric solutions of the matrix equation A(P) 0. Hence , to charac —

terize further internal realizations , one could derive the discrete time

counterpart of the fundamental results of J. C. Willems (40 ] on the alge—

braic Riccati equat ion. However , a result akin to the classification of

the solutions fo the algebraic Riccati equation can be obtained directly

for the state processe s of internal realizations. Notice that once the

state x(t) of an internal realization has been determined the input

u(t) can be obtained inverting (2.9) as follows

u(t) — —R(P) ”
~~

2Hx( t) + R (P)~~~
2z (t)

(In the case when R(P) is singular we need to perform an appropriate

number of differencing operations on the output in various directions

(cf . (73 for example) before we can express u in terms of x and z .)

_ 
- 

- i 
~~~~~~~~~~~~
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Therefor e we turn to the problem of characterizing the state pro-

cess of internal real{~ations .

Let us introd uce the feedback matrix

r
* * *

The matrix is asymptotically stable due to the miniin*lity of z (13].

It plays a central role In stochastic realizat ion theory, as it is clear

from what follows. In particular we have the following important result ,

whose continuous time counterpart can be found in [193 .

• -Theorem 2.8 ( ( 3 3] )  The proces s x is the state of an interna l

realization if and only if

(2.38) x(t) — (I — 1r ]x~ (t) + l r x *(t)

where ir8 is the p rojection onto an invariant subs pace S of r~ along

(P* - The covarianc. P of x and iT are related as follows

(2.39) iT — 11(P) — (P — P~) (P* — P ) ~~

We shall give a new proof of this theor em, by means of an approach

Which allows us to characte rize also the external realizations in the

same framework. Our deriva tion hinges an the following simple observa-

t ion. Let (F , (B1, B2) ,  H, R(P)~~
2; w] be a pr oper stochasti c realiza-

tion of z with stat e process x and state covariance P. Then

tr w, (B1 — B*R(P ~) ]
~‘2R(P) 1.~’2 ,32) ,&(P~) l

~
2R ,R(P

*
) _lhI2

R(P)~~
F2

;w] isa proper

(noni~t{n fi~~l) stochastic realization of the innovation proces s u~ with

stats process x — x~ and stat e covariance — P — This can be seen

I

_ _ _ _ _ _ _  ~~II ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ ~~~~r 
—:

~~~~ ~~~~~
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by inverting the filter (2.23 )— (2 .24) to get

(2.40) x~ (t + 1) — r
~x~

(t) + B*
R(P

*Y~
1”2z (t)

(2.41) u~ (t) - -R(P~)
”2Bx~(t) + R (P~)~~

’2z (t)

and using (2.6)—(2.7). If we set x(t) — x (t) — x~(t), we obtain the

model

—112 1/2 -

(2.42) x(t + 1) — r~x(t) + (B1 
— B*R(P

*
) R(P) )u(t) + B2v(t)

(U
- v — I

(2.43) u~ (t) — R(P ~)~~
’2H~ (t) +

which is a forward stochastic realization of u~ since w(t) i. H (x)

for all t . The representation (2.42)—(2.43) is not m~n~~a1 since u~

is a whit e noise and its inin1inel realizations have dimension zero . Con—

versely consider a forward stochastic realization of u~ of the form

(2.44 ) ~(t + 1) — r~~(t) + B1u(t) + ~2v (t) w — [
~
)

(2.45) u~ (t) R(P ~) 112 (R ~(t) + R (~ )~~
2u(t) ]

where w is a normalized white noise and B1 is n x a. Observ e that

w(t) is orthogonal to H~(x)~ wher e x — ~ + x~, since x5(t) e H~_i
(z) —

We conclude from this that (F , 
~
1
~ 

+ B~R (1’) ’ , B2) ,  H,

w] is a minImal stochastic realization of z. We col-

lect these observations in the following

— T~~~~~~ ~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~ -~~~~~~ ••~-~-.~~~~~~ ~~.
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Lenina 2.9 The map which sends the realization (F , (B1, B2), B,

WI to the rea lizat ion (r e, 
~~~ 

— B~R(P~)~~
’2R(P) ~~

2 , 
~2~ ’

R(P
~
)”2H, R(P

~)
’ 1 (P) 1”2; wj is a one to one correspondence between

- 

1 
realizations of z of the fo’rin (2.6)—(2.7) and realizations of u~

of the form (2.44)—(2 .45).

The map in Lenua 2.9 also induc es a correspondence betwe en state covari—

ances vhich aaps P e P  to P — P t, translating the set P of the

amount —Pa . The set — — has the zero element as its minimum

and the positive def inite quantity P* — P~ as its maximum. Notice that

the correspondenc e established in L~~~a 2.9 is simply the correspondenc e

between the two input—output relations

z(t) — J e~~~W( e~~) dG (w)

- JT ci W 1(e~~)W(e~~) d*(~)

where W(z) — H(zI — P) 1(B1, 
~~ 

+ R(P) 112, dO is an orthogonal stochas-

tic measure such that w(t) — fi ~~~~ d*(w) and W~(z) — R(zI — F)~~E~ +

From (2.23)—(2 .24) and (2 .40)—(2 .4 1) we know that ç(z) —

f or all t and U(z) — R(u~) .  Since u~ is a white noise we have the

following orthogonal decomposit ion for the space R (z)

(2.46) R (z) — a ;1(z) S

Then, if x is the state process of an internal realization, we have

- - -~ ~~~~~~~~~~~~~~~~~~ - -~ 1
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x(t) — E{x (t)IH(z)} — E{x (t) ~H 1(z)) + E{x(t)1H (u
*

))

which implies

(2.47) x(t) - x~
(t) + E{x (t) - x*(t)1H (u*

)}

in view of (2.27) and the orthogonality between x~, (t) and H ( u ~). To

compute ~{x(t) — x~(e)IB (u*)} observe first that x (t) — x(t) — x~(t)

is the state process of a realization of u,~, of the form (2.41)—(2.42).

Secondly, notice that u,, is a stochastic process enjoying all the pro-

perties of z. Therefore we simply deriv e relation (2.36) with x and

in place of x and z respectively. - This idea of replacing a sto-

chastic process by its innovations is of course very co~~ on in filtering

theory and it turns out to be helpful also in our context .

We shall now derive the backward counterpart of a realization of the

type (2.42)—(2.43) corresponding to an internal realization. We set 
~2 

—

0 in (2.42)—(2 .43) and define ~ — P — P ,,. An orthogonal decomposition

for ~ (t) as in (2 .18) yields the identity— — —(2.48) x(t) — ~~~ x(t + 1) + (x(t) — Pr~
P z(t + 1)]

Observe that z(t) — 

~r~~~(t + 1) is orthogonal to H;_1(z) . Also ,

using (2.42)—(2.43), we see that E{ (t) — ~r~~~(t + l) 1R ÷1(u*)} — 0.

Hence, using (2.46),

— .4... a — — .4.. .
z(t) — Pr~’P x(t + 1) — E{x(t) — ~~ x(t + l) Iu *(t) }

I,
— E{x(t)Iu~

(t)) — PE ’R(P*Y
”2u*(t)

and (2.48) becomes

_-t 
~~~~~~~~~~~~~~~~~~ -. .~~~~uI. • ..- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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34— — -4— — -1/2(2.49) x(t) — pr~ x(t + 1) + PH’R(P~) u~(t)

or

(2.50) ~~~ (t) — ~~~~~~~ + 1) +

The output simply reads

(2.51) u~(t) — 0~~~(t + 1) + u~ (t)

where 0 is the a X n zero matrix. The model (2.50)—(2.51) is the

backward counterpart of (2.42)—(2.43). We stress the fact that all

backward realizations of the innovations which we obtain in this fashion

from realizations (2.42)—(2.43) with B
2 

— 0 have th~ sane input noise -

For x — x* — x~ we obtain the backward filter

(2.52) (p* — P*
) ’(z*(t) — x~

(t)) —

— r~(P* — P*)
’(x*(t + 1) — x~(t + 1))

+ H ’a(P~)~~
’2u~(t)

Using alternat ively (2.42) and (2.49) to compute E {x(t + 1) (t)’}

we establ ish the identity ~~ — which gives

(2.53) —

Then, using (2.49) and (2.53) we obtain

(t) — ~ (r~)~R ’R(P~) ”2U~ct + i)
i—O

which, together with (2.52), yields the desired expression

(2.54) x(t )  — x5 (t) + (P — P~) (P* — P*
)~~~(x *(t) — x*(t))

_______________ _ _ _  _ _ _ _  I ~~~~~~~
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Hence ~ (t) e H(x*(t) — x~ (t)) and (2.54) can be written

(2.55) ~ (t) — E{ (t)Ix *(t) — x~(t)}

— (P — P*
)( P* — P*Y

1(x*(t) — x5(t))

from which it is seen that ir(P) — (P — P*
)( P* — 

~~~~~~~~~~ 
is a projection.

Rewriting (2.53) in the form

- 
r~Ir(P) — ir(P) (P* — P~)~~r~1r(P) -

we see that n (P) projects onto an invariant subspace of r~. Since

Ir(P) (P* — 1~ ) — (~* — P~)T(P)’ and ir(P)’ projects along S~ (15; p.61] ,

- - we conclude that ir (P) pr ojects parallel to (P* — P5) S~ . Conversely

• if ii projects onto an invariant subspace of and ir(P* — P~) —

(1~ — ~‘~) ,r ’, i.e., ii is an a~nissabl. p ro~fe ction in Ruckebush’ s language,

it is easy to construct first a r ealizat ion - of the innovations and then

one (internal) of z along the same lines as in (33]. This completes the

proof of Theorem 2.8. II

Reniark 2. 10. Notice that , given the specia l form of the realization

(2.50)—(2.5l), we did not need to invoke any invariance property such as

(2.32) of the filter (2.52) to compute E( (t)1H (u*)}. The following

interpretation for Theorem 2.8 emerged in the proof. The state process

of an internal realization of z is given by the forward filter of z

plus a “piece” of the maximum variance error x*(t) — x5(t).

This piece must be such as to conform with the dynamics of x5(t) — x~(t)

which is determined by the transition matrix r~, i.e., it must correspond

to an invariant subspace of r~.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ --I
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2.5. External realizations.

It is clear that a necessary condition for the existence of external

realizations is the presence in H of elements orthogonal to H(z).  For

the sake of simplicity we assume that H — Ez) • H(~),  where ~ is an

n-dimensional normalized white noise orthogonal to H (z) . As it will be

apparent from what follows, this assumption is the minimum one needed to

guarantee the existence of a proper stochastic realization corresponding

to each wide sense stochastic realization.

Let x be the state process of a realization (2.6)—(2 .7) and P its

covariance. Then the bounterpart of (2.47) is

(2.56) (t) — x~ (t) + E {x(t) 1H (u
*
)} +

and (2.48) corresponds to— — -1/2(2.57) x(t) — ~~~ x(t + 1) + PH ’R(P~ ) u~ (t)

+ E {x(t) — ~r~~~ (t + l) 1H (~)}

Now let us assume that ~ is chosen in such a way that the condition

J. H ( ~ ) holds and ~ and are stationarily correlated f or

every realizat ion (2 .42)—(2 .43). This assumption is introduced to enable

us to treat ~ in the sane way as th ,e innovations. It will be clear

from what follows that indeed this is a natural assumption when trying

to model all realizations using a unique exogenous noise. We can now

add to (2.42)—(2 .43) the output.

~(t) — )~~(t) + (C (t )  —

where N — t{~ (t) (t) and an argument very similar to that used for 

* - - - - . ~. ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~
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the innovations gives E{x(t) — ~F~~
#x(t + 1) 

I 11(C) ) — ~H’C (t) so that

(2.57) becomes 
-

— — —#— — -1/2 —
(2.58) x(t) — ~~~ x(t + 1) + PH ’R(P~) u*

(t) + PM ’C( t)

Note that N must satisfy— _ .4 — — —l — — —P — ~~~ r~P + PH ’R(P~) HP + PM’NP

and that, as in the internal case, the input noise (ui, C) is the same

for all realizations.

+Let x1
(t) and X

E
(t) denote E1x (t)IH

~
(u*)}

and EG(t) 111(C)] respectively. Then it follows from (2.58) that

(2.59) 1(t) — (P — P*) (P* — P*
)~~ (x*(t) — x~

(t))

and

— — #—  — 
-•

(2.60) xE(t) — ~~~ xE (t + 1) + Pt4 ’C(t)

Using (2.53), (2.56), (2.59) and (2.60) we conclude that

(2.61) x(t ) — x~(t) + (P — P~)(P* — P
*Y 1 (x*(t) — z~(t))

+ ~ (rp~M ’~(~ + i)
i—O

Conversely, given any matrix N such that N ’?’! e let P solve

— r~~’r~ + H’R(P~)~~fl + M ’M

Then, using (2.61), we construct the state of a stochastic realization

of z. All the realizations with singular P can be obtained through 

~~~~~—•- ~~~ -••••~ - - - - —i--- — — -~~~~ --. — - - •~~
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limiting procedures, using realizations corresponding to unbounded se-

quences of M ’M in the cone C .  -

The derivation of the classification of external realizations pre-

sented above is quite similar to the one given in [33; p.65], but we

feel it will give some further insight into the cOncepts described there.

Moreover it provides a clear stochastic meaning for 
- 
the parametric rep—

resentation of the set P derived by Faurre (12; p.52] in continuous

time and by Germain (13; p.61] in discrete time. Finally the input pro—

ceases of external realizations can be characterized along the same lines

as ln (19].

~~~~~~~~~~~~~~~~~~~~~ -*~
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Part 3

DISCRETE TIME STOCHASTIC REALIZATION:

ThE SINGULAR CASE

3. 1 Invariant, predictable and smoothable subspaces. -

Problems I and II are called einguZ~ ’ when $(~‘) is singular . It
follows from Theorems 1.6 and 1.9 that in the singular case there exist

nontrivial invariant directions for the Riccati equation (1.5) associated

to every solution to Problem I. Abusing language we shall say that a

vector a is invariant (predictable) for [A,, 3, C, DJ if it is invari—

ant (predictable) for the corresponding equation (1.5).

Proposition 3.1 The apace I of invt~ -f~ant directions is inv n’iont
over all wide 89fl89 realizations of z.

Proof. I ediate from Theorems 1.6 and 1.9. II

The following resul t descr ibes the singular case in a number of

different ways.

Theorem 3.2 The following statements are equivalent:

(i)  $(c~~) is singular .

-~ (ii) r~ is singular .

Li

——.-—— 
-~~~~~~~~~~—
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(iii) R(P*) is singular . -

(iv) R(P )~~
2 B~(F ’) 1H ’ is singular. -

Proof. Let y c Ra be in the null space of •&). Then , recalling that

• DD’ — DB ’(P’)~~H’ where (F , B, H, D] is any wide sense realiza-

tion, we obtain from (2.25) B~ (F ’)~~ H’y —  (HER ’ + D D ’)1”2y — R(P~) 1”2y.

Hence y e N(R(P~
)
~

’2 
— B~(P f) 1H~) and (F ~)~

1H ‘y c N(r~) . Conversely ,

if (ii) holds , use the fact that the eigenvalues of r5 are equal to the

zeroes of the determinant of W~ to get (iv) from which (i) follows tri-

vially. The equivalence between (ii) and (iii) has been proven by

Ruckebuach (33; p .70] . II

Corollary 3.3 The sat Q~ is nonanpty if ond only if •(c.) is

singular .

Proof. For any P ~ we have R(P *) � R(P) . II

- 

I 
This says that the singular case occurs precisely when some of the

wide sense realizations have R(P) singular , in particular When R(P*)

is singular . This constrast with the continuous time situation where,

when the innovation process is full rank, all the input noises have non—

singular int ensity.

Let T11(i) i — 0, 1, ... be as in Theorem 1.9 so that $(z) —

~~~ 
T~(i) z~~ for I z I  large enough 

~~ 
be the weighting pattern

(1.17) corresponding to the minimum variance realization.

Theorem 3.4 Th following statements are equivalent:

(i) C is ~ z a-invariant direct ion of the wide sense realization

[F , 8, 11, D].
( ii) a — 

~~~ 
(P’)~~ R ’X~ with ~~~~~~ T11( i)A~~ 1 — 0 j — 1, ..., a. 

— -.-——- 
~~~~~~~~~~~ — ~~~~ -— ~~~

— —-—- --- — 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~ -~~~- —‘-- ~ — — ~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~--- ~~
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(iii ) a — ~~1 (F’)~~ H ’A~ with 
~ ~5(i)A ~~1 — 0 j  — 1, ..., a.

(iv) a — (P t) ’iØ ‘X~ with a ‘x~ (t) • ~~~~ 
A~z (t — i) fbi’

all t .

(u) a is a generalized eigenvector of r~znk s (an eigenvector if

s — 1) of r~ corresponding to the tigenvalue zero.

Proof. The eigenvalence of (ii) and (iv) is immediate . The rest follows

at once from Theorem 1.6, in view of Proposition 3.1 and the fact that I t

the deterministic and stochastic elements in the minimum variance reali-

zation can be obtained as limits of the corresponding quantities in a

transient Kalman filter of the form (1.3). II

Corollary 3.5 All the invariant directions of (F, B~, H, R(P~)
”2]

are pz ’edictzZi..

Proof, it follows directly from Theorem 1.11 and condition (iii) of

Theorem 3 4. II

S Note that in Theorem 3.4 the space I appear s as the invariant

subspace of r~ related to the zero eigenvalue. We now introduce the

backward counterpart of the concept of invariant direction. A vector a

is said to be a dually s—invariant direction of the dual transient Riccati

squat ion -

— 1) — F ’~ (t)F — (F ’Y(t)G + 15’)(C’Y(t)G + ~ö’f~ (G’~(t)F +

(3.1) + u~’

if ~ ‘~ (—t ; 
~

) — ~ ‘~ (—s; 0) f or all t � s and all P £ C~. Also let

.- ———--- -—————‘---“———— — - .~~~~~~~ - - S. -
-
, ~~~~~~~~~~~~~~~~~~~~~~~~~ - _________ - -- - — t 

~~~
- ; 

-
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- T be given by (1.17 ) with (F ’ , 1, G ’ , j (~ )112) in place of

(A, 8, C, DJ . Duality now gives the following result.

Corollary 3.6 The fo llowing statements are equivalent:

is a dually s-invariant direction of the bac1a~ird wide

sense realization (F’ , 1, C’, ~J .

~~~~~~ — 1 ~~~~~ With ~~~ T~(i) ‘Uj.a — 0 .j — 1, ~~
(iii) a — 

~~~~~~ 
F~~Gii~ with ~~~ i) ~~÷~ — 0 j  — 1, ..., S.

(iv) ~ — 

~~~~ 
F~~Gp~ with ~ ‘ (t) — 

~~~~~ 
u~z( t + i) f o r  all t.

(v) ~ is a generalized eigenvector of rank s (an eigenvactor

if a — 1) of 1~ — i’ — i~i(~~) 112G ’ corresponding to the

eiganva Zue zero.

Next we define the dual counterpart of predictability.

Definition 3.7. The n—dimensional vector ~ is called an s—emoothabl.a

direction of equation (3.1) if

(3.2) a ’r(—c; P) — ‘~(—s ; ~) — 0 for all t � s

The terminology is motivated by the fact that if a satisfies (3.2) then,

by property (iv) in Corollary 3.6, we can smooth the state of any proper

stochastic realization corresponding to [F’, B, C’, D] exactly in direc-

tion p—i.;, Clearly all the dually invariant directions of

(F’, i~, C’ , j (~~ ) l/2 j are smoothable. Let I indicate the space of

the invariant directions of (3.1) which , by Proposition 3.1 and duality ,

• is invariant over all backward wide sense realization. Ruckebusch proved

t 
_ _ _ _ _ _  _ _ _ _ _  

_ _ _ _ _ _  _ _ _ _ _
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that I’~ — (p*)~~(p* — P~)r ~ (P* — p
~)
’p* (33; p .53). Therefore it

follows from Corollary 3.6 that (P* — P5) (P*)~~7 is the invariant sub—

space of r~ corresponding to the zer o eigenvalue. Moreov er the dimen-

sions of 1 and j  are equal . The following theorem characterizes the

predictable subspace of an internal realization and the smoothable sub—

space of the corresponding backward realization. It also shows that the

sum of the dimensions of these two subap aces is constant and equal to

dia l.

Theorem 3.8 Let x be the state process of the interna l realization

(F, B1, H, R(P) 1~
’2; ul and S the invar iant aubap ao. of F~ associated

with x in Theorem 2.8, so that x(t) — x~(t) + 1r5(x*(t) — x5(t)) with

ir
5 

given by (2.39). Then, if a — 

~~~ 
(F ’)~~~H ’A~ belongs to S~ n I

and a — }i—l ~~~~~~ belongs to P*(P* — P~)
1S n I we have

(3.3) a ’x(t) — ~~ X~z(t — i)
i—i.

and

(3.4) kP*) 4x (t) — 
~ 

p~z(t + i — 1)
i—l

Moreover diln(SL n I) + dim(P*(P* — PC)’S n T) — dim 1.

Proof. Since (P* — P*
)~~

,,
5(P* — — iT ’ and ir proj ects parallel

to (P* — P5)S~, we have a ’,i — 0 and ‘(p*)~~ ,r — ‘(P*)~~ . Proper-

ties (iv) of Theorem 3.4 and Corollary 3.6 now yield (3.3) and (3.4) res-

pectively. Let k be the smallest positive integer such that I —

N ( ( r ~~ 5; Theorem 3.4(v) insures the existence of such a k. Then we

have the direct decomposition Rr
~ — I • R ((r ,~)’5, where R( (r~)k) is the

t 
- • - — - - -  - ,- _ • _ _,_ _ - _~,.~_ a- •~~_~_.*____—-_•__-_—- •--—-—- — - - -- - —-—-- - ---—-—-•——— - - - - - -
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range space of (r~)k, cf. (15; p.166] for example. Consider also the

usual orthogonal decomposition R
Xl 

— N((r 5)k) • R((r ,)~5, where N((r~)
k) —

— I~ ) (P *) ~~T .  it follows that dia(S a 1) — dim($ a (p* — 

~~~~~~~ 

(p*) ’lY).

To complet e the proof , observe that I — (I a S) • (I a Si’) and tha t

dia(S a (P* P5) (p*) 1T) — dim(P*(P* — a T).  /1

It is worthwhile mentioning that a ‘ (P *) ~~ in (3.4) has actually

the form !~_~ 
~~~~~~~~ with T(k) 11n—k — 0 for j  — 1, ... ,

as one can readily verify using (2.4)—(2.5) and (2.16)—(2.17) to estab-

lish the corr espondence between T ( ’) ’  and 1(’). Conversely such a

vector leads to a smoothable direction in the backward setting . Hence

a predict able—smoothable direction in the forwar d setting (i.e., a di—

rectio n in which the state can be computed from a finite n~ nbar of obser-

vat ions z) has the form ~~ 
(P ?) iH uI~ with Y £ N(T) , where •)f ’ -

~~—r ~n—2 ’ 
~~~~~ ~

‘ ‘ and T is a block diagonal matrix,

the two diagonal blocks being block tri angular Toeplitz matric es. The

upper one has 1th row (T(i — 1)’ , T(i — 2)’, ... , T(0)’, 0, ... , 0] and

the lower one has ~~~ row (T(i — 1), ~(i — 2), ..., ~ (0) , 0 , ..., 0),

where i 1 , ..., n.

The linear hail of the components of x5(t) and x*(t) is called

th. f rame apace [18) and denot ed by R~ (z) . In view of Theor em 2.8 , we

know that the components of the state at time t of an internal realiza—

tion belong to E~ (z) . Let us introduce the subspace H ÷
(z) of

given by the linear hull of element s of the form a ‘x~ (t) and

where a varie s over I and a over j . By analo gy to

the continuous time case [10] , we shall ca.U. H +(z) the g.z~ apace,

_  - _  ‘..* — — __,_~~•~~ - • ___ • - - - - - - - - —.—--••.•————..-.~~~~~~~~ -

-— - -

- ~~~~~~~~~~~~ ~~~~~~~~~~~
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S

since it contains linear combinations of differences of the type ~~z (a) —

z(s) — z(s — r) and of certain other values of the process z that in-

dicat e precisel y the degree of “smoothness ” of the cavariance of z in

different dir ections . Then Theorem 3.8 shows that dim (X(t) a H +(z)) —

t
dim I, where X(t) is the space spanned by the components of the state

x(t) of an internal realizat ion. Note that in contrast to the contin-

uous time situation [18] , the inclusion H +(
~

) C X(t) does not hold .

From now on let dim I — V.

Theorem 3.9 Let [F, B1, H, R(P)~~
2; ii] be an interna l realization.

Then this realization owz be embedded in a chain of internal realizat ions

[F, B.~(i) , H, R(P~)112; UjI with state spaces X~ (t)~ i — 0, ... ,

such that P � P1 � ... ~ ~ ‘ (X0(t) n H +(z)) c K~_1(z) and

(X
~
(t) a H ~(z)) c H (z).

t t
Proof. -Let S be as in Theorem 3.8 and a,, ... , a be a basis forr

S~ a I. Then we can generat e a family S~ of invariant subspaces of

F~, S. — 0, ... , V , with diaL(St a j) V — i, simply eliminating from

one at a time, the aj or adding to S~ new linearly independent

elements of 7, both operations being performed t~1’t~g due care of the

rank of the generalized eigenvectors which are dro pped or added , so that

the resulting subspace is indeed invariant for r~. This can be done

since I can be decomposed into cyclic subspaces. Clearly this procedure

yields a family of internal r ealizations which differ only on the germ

space and such that S — Sv_r • The state covariances are totally ord er ed

since, if S. < J and x~ (t)~ x~ (t) are the corresponding state pro-

cesses, x~(t) is equal to x~ (t) in any direction in which it differs

_ _ _ _ _ _ _  

_ _ _ _ _ _ _— --— — — __J-”~ •-~_~~—-•• - - 
— - ~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - •- — -— - -  - - --——*—— -
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from x
j
(t). Finally, by construction , (F , B

i(0). H
, R(P )1’2; u ]  has

a full size predictable subspace and the backward realization corr espond-

ing to [F , B1(v) , H, R(P
~)
”2; u~] has a full size smoothable aubspace .

Thus , the last assert ion of the theorem follows. II

Notice that the chain of realizations in Theor em 3.9 is by no means

unique. However the minimum and the maximum realiza tions are uniquely

determined . In the case when r,, is cyclic, the number of internal

realizations is finite and � t [40; Remark 18] . Our work has shown

th*t + 1) is actually an upper bound in the cyclic case. In

fact internal realizations are in one—to—one correspondence with the in—

variant subspace s of r~ and, when r~ is cyclic, I is cyclic and the

chain of invariant subspaces constructe d in Theorem 3.9 is unique , so

that the number of dif f erent invariant subspaces of is less than or

equal to 2fl_V
(v + 1).

Let us consider a proper externa l realization of the form (2. 6)—

(2.7) and an invariant direct ion a — 
~~~~ 

(F ’)~ H ’X~ for it which is not

¶ predictable. Then two cases can occur . Either (P ‘Y~~i ‘x~~ be-

longs to N(B2) for j  — 0, ... , n — 1 or it does not. It can be seen

that in the first case we are in a situation akin to the one for internal

realizations and we can associate to the vector a a smoothable direction in

the backward setting . In the second case , Which always occurs if

> 0, a is invariant but the state cannot be determined exactly

from a f inite string of observations and we would need to have available

the process ~ orthogonal to H (z) and to model external realizations

as done in Section 2.5 to be able to calculat. the state in V linearly

independent directions. Far the sake of brevity, we have avoided here

-

~

- - - .  -
~~~~~~~~~ 

- 
- --

L - - - - -. -
~~~~
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going into details about external realizat ions . However , it should be

clear from our discussion that the sum of the dimensions of the predictable

and smoothable subspac es associated wit h an external realization is less

than or equal to V. This fact has the intuitive meaning of indeterminacy

introduced by the presence of the orthogonal component C.

The presence of nontrivial invariant directions allows , as it should

be expected , for a reduction in the dimension of the filter ing algorithms

available in the literature. For instance, it is a simple exercise to

verify that Faur r e’ s algorithm s to comput e P~ and ~ * [12; p.56] red uce

to solving (n — x) x (11 — v) matrix equations, the values of P~ and

(P*)~~ on the subsp aces I and ! respectively being known a priori in

terms of H, F and C. A similar reduction can be obtained for the fast

algorithms which compute the gain (1.4) directly (cf . [17] for example) ,

since it is clear that in an invariant direction the value of the gain

can be comput ed directly in terms of the system matrices.

3.2 Noise free stochastic realization and the singular case.

Akaike, in his important paper (1], deals with Markovian representa—

tions of the process z without noise in the output and only in his

- 

- 
concluding remarks discusses representations with addi tive noise t erms .

Indeed , his work was based on some results oi Faurre (11] which, starting

from a certain factor ization of the covari ance matrices , were phrased in

terms of noise—free realizations . In subsequent work (12) Fau rr e turned

to a different factor izat ion of the covariance matrices which led natu-

rally to realizations with noise in the output . The same choice has ,

since then , been made by a number of authors [13, 22, 23, 33], but up

-
~~~

- - - -~~~m~~~~~~~L ~~~~~~~~~ -~--~---~~i



_ _ _  _ _  _ _ _  

-

I

- 48

to our knowledge, it has never been explained whether the two appr oaches

are equivalent and, if not, what are the shortcomings of either one. We

shall now show that , precisely in the singular case, the first app roach

presents a considerable disadvantage, in that many minimal Markovian real-

izations are lost. Let us start considering a minimal factorization

(E, e, ~‘) (i.e., completely controllable and observable) like the one in 
*

[11], namely

(3.5) — E{z(t + j)z(t)’} ‘ ‘VE~O j — 0, 1, 2,

and let dim ! r. On the other hand, since • is the double side

z—transform of A, we have

HP~~
1G j  — 1, 2, 3,

(3.6) 1~~ — 
—

G’(F’) La, + .(~°) —

Theorem 3.10 Zet k be the dimension of t4(~~ (co) ) and assume, with-

out lose of gener ’alig, that 4 ’(~) • [R ’O] ~àhei ’e f t is Cm - k) X a.

Then C!, e, ‘I’) is given, up to a change of basis, b~i

(3.7) C!, e, ‘1’) — 
f r,  R~’!IJ’ fa f°J])

whez’e

r F o l

L O O J

the i4.ntity matri is a - k dimensiona l and r - n + a - k.

Proof. it is easy to check that the triplet in (3.7) satisfies (3.5).

I

_ _  
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—~~~~~~



— —.--- ~~~~~~~~~~ 

49

Also (E, 0) is controllable and (!, ‘V) is observable. In fact sup-

pose a with a..~ E and a2 E Rm—
~ is such that

C PG •.. 7n4in—k-2~~

(3.8) (cz.~, up~ —

0 0 ••’ 0 J

Then we see that a.~ must be zero, which forces ci? — 0 and fin til y

a2 — 0. We conclude that the controllability matrix in (3.8) is full

rank. Similarly the observability matrix is seen to have rank

• n + a - Ic. The conclusion now follows from the uniqueness , up to an

equivalence as in (2.1), of the triplet (!, 0, ‘F). II

Let us assume for the moment that •(c’) is nonsingular and consider

a proper stochastic realization of z (F, B, H, D; w]. Then we can

associate to it the noise free model

— ~~
lB 7

:1 (3.9) ~(t + 1) — F~(t) + 
_~~ 

In(t)-L
(3.10) z(t) — (H I]~ (t)

where

F~ x(t + 1)
—1(D— ~~ B)v(t)

and ~(t) — w(t + 1). This induces a one—to—one correspondence between

wide sense realizations of the form (F, B, H, D) and noise free wide

sense realizations of the form (~ x (H I)] which are ~~~~~~ too in

view of Theorem 3.10. If we agree to call realizations (~, x’ (H I); n]

~ 

~IITI .JT _ J~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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with ~( (n + m) 
X a internal, then the above correspondence is one—to—

one between internal realizations. In particular it maps

(F , B~, K, R(P )~~
2 

~~ to a realization related to the steady state

pure filter, i.e., the second innovation representation 1R2 in Gevers

term inology (14] .

Suppose now that •(co) is as in Theorem 3.10 with I c >  0. Then

it is possible to set up a correspondence similar to the one in the

nonsingular case only for a rather small subclass of wide sense realiza-

tions. More explicitly, let (F, B, H, D; w) be a realization such

that T(O) — D ’  - B’(F ’)~~ H ’ has rank a — Ic and V an orthogonal

matrix such that [D - HF 1B]V — {
~J where S is (a - Ic) x p, p

- 
,

- being the number of columns of B. Then we have the n + a - Ic dimen-

sional noise free model

(3.U) ~(t + 1) — F~(t) + I
Ls J

(3.12) z(t) — [a {~)]~(t) -

+ 1)
where ~(t) — and ~(t) — V’w(t + 1). The wide sense

SV ’w(t)

realization given by (3.ll)—(3 .l2) is &nhiutl . This establishes a one—

to—one correspondence between minimal wide sense realizations of z

such that T(0) has rank a — k and mf~imal wide sense realizations of

the form (F, X, (H [~) ) ] .  It is now apparent that the choice of seeking

noise free representation of z can cost us, in the singular case, the

loss of a considerable number of realizations. Indeed, it is not hard

- - ! ~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - - 
~~~~~~U~~~~~ * ~~~~~~
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to see that the subset of P correspond ing to realizations with rank

~(0) — a — Ic Lie, as Q., in the relative boundary of P.

This shows that, in discrete time, the factorization (3.6) and the

associated choice of H 1(z), instead of B
~

(z), as past space at time

t, is more convenient, even though it implies the unpleasant fact that

white noise processes have zero dimensional minimal realizations.
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